

# JAEA R&D Efforts for Decommissioning of the Fukushima Daiichi NPS

International Topical Workshop on Fukushima Decommissioning Research 2022 & The First 2022 Fukushima Research Conference October 15, 2022, J-Village, Fukushima

> Kentaro Funaki Sector of Fukushima R&D Japan Atomic Energy Agency

未来へげんき To the Future / JAEA





# **1. Introduction**





# R&D for Environmental Restoration of Fukushima

# **R&D for Decommissioning**

# Building R&D Base/Platform

- facilities

- human networks etc.

# Contributing to Fukushima Revitalization

- Collaboration with local stakeholders
- Working with local industry
- Human resource development





**EA** R&D sites/facilities for Fukushima R&D





未来へげんき To the Future / JAEA

# 2. JAEA Roles for Decommissioning R&D



Organizations involved in decommissioning R&D





Decommissioning Science Diagram (Mainly for basic and fundamental R&D) MEXT Research grant for Decommissioning Science (Mission H)

## **Decommissioning Science Diagram** mainly for basic and fundamental R&D







Scale of research topics

**Remaining challenges and R&D needs** 

### At the Fukushima Daiichi site, some progress has been made, …… But, there remain unpresedended challenges ahead for the long run.

- $\checkmark$  A large amount of radioactive materials, remaining unsealed and unknown
- ✓ Incomplete barriers for containment
- ✓ Uncertainties on the state of radioactive materials and containment barriers
- ✓ Difficulty in an access

(Source: NDF Technical Strategic Plan 2021)

Goal !!

### R&D Needs

- Collect, consolidate, and analyze data
- Characterization and visualization
- Methodologies for safety and risk assessment

"Sherpa guide" for "the mountain climbing team"









未来へげんき To the Future / JAEA

# 3. Fuel Debris Retrieval R&D





# Near-term goal: launch the first retrieval operations from Unit 2



- JAEA R&D focuses/priorities
  - Estimation of PCV internal condition and fuel debris characterization
  - Safety/risk assessment for fuel debris retrieval operation
  - □ Analysis of fuel debris

2030 vision: ideal state (to be discussed further)

- 1. Trial fuel debris retrieval from Unit 2 progressed, and larger-scale retrieval from Unit 3 nearly ready.
- 2. Fuel debris analysis (incl. non-destructive methods) becomes well ready
- 3. Methodologies for safety and risk management established

# **Fuel Debris Retrieval R&D**

Preparation for launching fuel debris retrieval and R&D needs



- (5) Elucidation of aging degradation of fuel debris
- 6 Fuel debris storage and management technology
- Corrosion under peculiar environment

 Safety assessment for disposal (H<sub>2</sub> production, Corrosion, Aging, Exothermic property, Longterm stability, etc.)

# **Fuel Debris Retrieval R&D** Preparation for launching fuel debris retrieval operations



# **Fuel Debris Retrieval R&D** Ensure safety during a series of fuel debris retrieval operation

**2030 vision (1)** a : the first/trial fuel debris retrieval from Unit 2 is progressed, so that safety / risk assessment methodologies of a series of fuel debris management operation are established



- Examine safety/risk assessment for fuel debris retrieval operation
- ✓ Build/ upgrade sample analysis facilities
   ✓ Develop non-distractive
  - measurement technologies

<Analysis>

### **Fuel Debris Retrieval R&D** Ensure safety during a series of fuel debris retrieval operation

**2030 vision** (1)b : larger-scale fuel debris retrieval from Unit 3 can become ready, as result of selecting and planning retrieval methods/approaches including access and containment





**2030 vision** ③: safety/risk assessment methods of fuel debris during the retrieval, transfer and storage are established

**Key R&D priorities** 

- Estimate PCV internal condition and fuel debris characterization
- Establish methodologies for safety/risk assessment for fuel debris retrieval operation
  - Access to internal PCV
  - ✓ reducing radiation dose/ exposure

#### **Fuel Debris Retrieval R&D Estimation of PCV Internal Condition and Fuel Debris Characterization** Fuel debris retrieval Fuel debris retrieval (First trial at Unit 2) (Expansion of scale) Radiological and material Improve work environment **Estimate PCV internal** Consolidate data to and reduce dose condition and fuel debris analysis evaluate safety and risk 2030 vision: ideal state (to be discussed further) **Actions/solutions** Backcasting 1. The first/trial fuel debris retrieval from Unit 2 progressed, and larger-scale **JAEA R&D focuses/priorities** retrieval from Unit 3 nearly ready. **Estimation of PCV internal condition**

➡ Unit 2

➡ Unit 3

 $\rightarrow$  Unit 1

Fuel debris characterization

simulated debris

Experimental approaches with

➡ Uranium-bearing particle analysis

- 2. Fuel debris analysis (incl. non-destructive methods) becomes well ready
- 3. Methodologies for safety and risk management established

# **Estimation of PCV Internal Condition** Unit 2

Most of the fuel debris is sedimented in the lower part of the pressure vessel.
The fallen fuel debris is metallic and is deposited relatively thinly in the pedestal.
Molten Core Concrete Interaction (MCCI) has rarely occurred.



- [ Understanding the fuel collapse phenomenon ]
- •Molten fuel collapses into the cooling water, and once cooled and solidified
- •Many particulate debris (easily oxidized and dispersed, and easily air cooled)
- •Re-melted (1000-1300°C) by decay heat, locally damaging RPV and falling

Relation between plant conditions resulting from the accident progression and subsequent condition changes.



Molten and solidified metallic debris blockage (Stone-like accumulates)

Relocated pats of a control blade and the other assembly parts

Relocated and solidified metallic debris (Solidified molten material)

Understanding the formation process and characteristics of fuel debris through large scale simulation tests

Unit 2 containment vessel sediments and simulated products



Estimated internal PCV condition



# **Estimation of PCV Internal Condition** Unit 3

Some fuel debris may remain in the lower part of the pressure vessel.
Fallen fuel debris is sedimented on the pedestal in a complex state due to complicated solidification from the solid-liquid state and entrapment of structural materials.
MCCI has rarely occurred.

 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10<

[ Understanding the fuel collapse phenomenon ]

- •Molten fuel collapses into the cooling water, and once cooled and solidified
- •Many lumpy debris (difficult to oxidize and disperse, difficult to air cool)
- •Re-melted (2000-2300°C) by decay heat, and fell over several hours in a highly viscous state

Relation between plant conditions resulting from the accident progression and subsequent condition changes.



Estimated to be under sediment. Observe central heave and residual structural material.  $\Rightarrow$  Viscous collapses over several hours Internal investigation result



# **Estimation of PCV Internal Condition** Unit 1

•Almost no fuel debris estimated in pressure vessel •Fallen fuel debris is spread inside and outside the pedestal and sedimented in a complex.



[ Understanding the fuel collapse phenomenon ] • Data at the time of the accident is scarce, and adequate evaluation has not progressed.

Relation between plant conditions resulting from the accident progression and subsequent condition changes.

work



Quite different from conventional expectations

Internal investigation result



Estimated internal PCV condition



### Fuel Debris Characterization Debris characterization data and knowledge-base





### Analysis technology and characterization(samples obtained from 1F internal investigation)

Demonstrate a sequence of procedures for unknown particles containing uranium, including sample collection, transportation, selection of analytical methods, sample pretreatment, analysis, and evaluation. Preparations for the analysis of fuel debris for the trial retrieval of fuel debris and subsequent expansion of the scale have been reliably advanced. The results will be reflected in the analysis techniques for the Okuma Lab. 2.

#### Well plug smear of Unit1

Outer appearance and dose distribution



Outer appearance and IP

#### OAnalysis result



- Analysis results are integrated into debrisWiki and disclosed as a database.
- Utilized for estimation of knowledge such as chemical properties of fuel debris and estimation of accident progression scenarios.
- Provide the results to the international community through the OECD/NEA international project and utilize them for joint analysis by participating countries.

## **Integration of knowledge and data** Systematic and multilayered compilation of findings



# **Fuel Debris Retrieval R&D** Safety/risk assessment for fuel debris retrieval operation





# **Fuel Debris Retrieval R&D**

### Safety/risk assessment for fuel debris retrieval operation



# **Safety/risk assessment: methodologies/knowledge** Radioactive particles/radiation effect

Evaluation of spatially dose rate before the start of debris retrieval operation



# **Safety/risk assessment: methodologies/knowledge** Hydrogen generation

To assess the risk of  $H_2$  explosion after storage of radioactive materials such as fuel debris, experimental and analytical researches from  $H_2$  generation to explosion are conducted.



Safety/risk assessment: methodologies/knowledge Aging management



< Implemented mainly by JAEA >

# **Reducing radiation dose/exposure** Radiation measurement/visualization

"Visualize" invisible radioactive hotspots in three dimensions Three-Radiation Compton -Understanding the distribution of radioactive substances. dimensional survey meter camera laser scanner Integrated Radiation Imaging System (iRIS) Working route Measuring of Image of high dose rate at 3D map visualizing radiation dose rate<sup>\*1</sup> contamination each point Signal processing board **Optical camera** The resultant image of the hot spots Hot spot (Red) obtained from the Compton camera is overlaid on the three-dimensional model inside the Fukushima Daiichi NPS building JAEA constructed using the photogrammetry technique.\*2 Gamma-ray sensor Compact Compton camera

# **Reducing radiation dose/exposure** Radiation measurement/visualization

Monitoring and confinement management of alpha nuclides are critical during fuel debris retrieval works.

### In-situ <u>a</u>lpha <u>ae</u>rosol <u>m</u>onitor (IAAM)



#### 31

Real-time high-resolution visualization of individual alpha particle spots

# Reducing radiation dose/exposure Radiation measurement/visualization

### The Optical Fiber Laser-induced breakdown spectroscopy (LIBS) analysis method

![](_page_32_Figure_2.jpeg)

# **Reducing radiation dose/exposure** Advanced radiation source evaluation

### Radiation source evaluation system by using digitalization technologies

![](_page_33_Figure_2.jpeg)

# NARAHA Center for Remote Control Technology **Development (NARREC)**

Efficient technology development and training via integration of physical and virtual mockups

- Mockup : Highly reliable and replicable testing under specific condition
- Virtual : Inexpensive evaluation under a variety of conditions

![](_page_34_Picture_4.jpeg)

### **3D Virtual Reality System**

![](_page_34_Picture_6.jpeg)

![](_page_34_Picture_7.jpeg)

### Full scale mock-up field

Unit 2 PCV mock-up for arm-like equipment demonstration test and operator training (IRID)

![](_page_34_Picture_10.jpeg)

#### ※ Source: METI official HP

#### Robot test areas

![](_page_34_Picture_13.jpeg)

![](_page_34_Picture_14.jpeg)

![](_page_34_Picture_15.jpeg)

![](_page_34_Picture_16.jpeg)

Motion capture system

![](_page_35_Picture_0.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_36_Picture_0.jpeg)

# **Fuel Debris Retrieval R&D**

**Analysis of Fuel Debris** 

![](_page_36_Figure_3.jpeg)

Utilization of JAEA's facilities and human resource development through OJT at these facilities

![](_page_37_Picture_0.jpeg)

Information and analysis items necessary for safety and risk assessment

- A Safety / risk assessment through fuel debris removal to storage / management
- B Safety / risk assessment in fuel debris processing

•In addition to the items applicable to temporary storage, the same analysis items as radioactive waste are applied. (Inventory evaluation: 38 Nuclide analysis, etc. )

### C Safety / risk assessment of fuel debris remaining in the container

![](_page_37_Figure_6.jpeg)

![](_page_38_Picture_0.jpeg)

### JAEA's hot laboratories for radiochemical analysis and human resource development

![](_page_38_Figure_2.jpeg)

# **Fuel Debris Analysis Enhancing capability and standardization**

Technology and system for evaluating the characteristics of fuel debris will be established as an approach for samples with unknown composition.

The simulated fuel debris prepared by an independent organization will be supplied to the hot laboratories in Japan.

The elemental composition will be analyzed using their own technology possessed by each laboratories.

|                                                                                                             | Hot<br>laboratories | Dissolution<br>method | Dissolution<br>rate | n<br>Remarks                                                                                                                          |                                                                                             |
|-------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Simulated fuel debris<br>(uniform composition)<br>• Including U<br>• 1F composition<br>Tohoku<br>University | NDC                 | HNO <sub>3</sub>      | $\sim$ 60%          | <ul> <li>Simple method</li> <li>Dissolves U and B compounds</li> <li>Complement the overall elemental</li> </ul>                      |                                                                                             |
|                                                                                                             | JAEA Oarai          | HNO₃<br>+ HF          | ~90%                | composition by analyzing residue<br>•Improved dissolution rate<br>by adding a small amount of HF                                      | Conducted by remote<br>control within the cell                                              |
|                                                                                                             | NFD                 | Aqua regia<br>+HF     | 98%                 | <ul> <li>Almost complete dissolution</li> <li>High accuracy</li> <li>Possibility of fluoride precipitatio</li> </ul>                  | 20<br>16<br>10<br>12<br>2章<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|                                                                                                             | JAEA NSRI           | Alkali<br>fusion      | 100%                | <ul> <li>Complete dissolution</li> <li>High accuracy</li> <li>Contamination of alkaline reagen<br/>and crucible components</li> </ul> | o<br>U<br>Gd<br>Zr<br>B<br>Fe<br>Cr<br>Ni<br>Si<br>元素<br>溶解液分析値の相対不確かさ(%)                   |

d aet element and operation

Analysis techniques for 4 basic evaluation items (morphology of analysis samples, nuclide/element content, phase state/distribution, density, etc.), which are important for fuel debris analysis items, are defined and shared among the parties concerned.

![](_page_40_Picture_0.jpeg)

#### Non-destructive assay technology for sorting of fuel debris and radioactive waste

- ✓ Destructive analysis of recovered PCV materials up to the order of kilograms stored is difficult.
- ✓ In order to reflect the sorting of fuel debris and radioactive waste in the future, non-destructive assay technology will be developed to sort them according to the amount of nuclear fuel material.

#### Candidate methods currently under consideration in the IRID project: (Participating organizations in the project: MHI, Toshiba ESS, Hitachi GE, JAEA collaboration) (1) Active neutron method, (2) Passive neutron method, (3) Muon scattering method, (4) X-ray CT method, (5) Passive gamma ray method

![](_page_40_Picture_5.jpeg)

Active neutron method (JAWAS-T) NSRI/NUCEF/BECKY

![](_page_40_Picture_7.jpeg)

Passive neutron method (PSMC) NCL/Pu-center

![](_page_40_Picture_9.jpeg)

Considered for use in passive gamma-ray measurement, etc. NSRI/RFEF

Overview of basic test equipment for non-destructive assay measurement methods (JAEA facilities and equipment scheduled to be implemented from 2023)

![](_page_41_Picture_0.jpeg)

未来へげんき To the Future / JAEA

# 4. Radioactive waste management R&D

![](_page_41_Picture_3.jpeg)

# **Radioactive waste characterization and analysis** Current status of waste storage

Temporary storage of solid waste on site of Fukushima Daiichi

![](_page_42_Figure_2.jpeg)

\* NDF, "Technical Strategic Plan 2021," Fig. A10-1, October 29, 2021.

**Radioactive waste management R&D** 

![](_page_43_Figure_1.jpeg)

### 2030 vision: ideal state (to be discussed further)

- 1. A risk level of remaining high-risk radioactive waste considerably reduced
- 2. Rational characterization methodologies established (e.g. statistical methods)
- 3. Discussion on a variety of options for waste disposal can be started

**Radioactive waste management R&D** Risk reduction of secondary waste from water decontamination

## Safe storage of relatively high-risk waste: secondary waste from contaminated water processing

![](_page_44_Figure_2.jpeg)

\* NDF, "Technical Strategic Plan 2021," Fig. A10-1, October 29, 2021.

(Note) Waste in red was already radiochemically analyzed.

44

![](_page_45_Picture_0.jpeg)

### Extensive analysis of contaminated water treatment sludge

![](_page_45_Picture_2.jpeg)

Sludge stored at "D pit"\*

![](_page_45_Picture_4.jpeg)

The only sample successfully collected

Sedimentation behavior of sludge observed in hot cell due to its high  $\beta$  activity

![](_page_45_Picture_7.jpeg)

Visual observation of sludge particle

![](_page_45_Figure_9.jpeg)

![](_page_45_Picture_10.jpeg)

SEM image and points of elemental analysis

\* TEPCO, "Report on stabilization of slurry and sludge," 25 July 2017.

# **Radioactive waste management R&D** Risk reduction of secondary waste from water decontamination

### Study on storage methods: evaluate radiation effect during longterm storage

![](_page_46_Figure_2.jpeg)

---- Initial interface

Expansion of solid phase due to generation of hydrogen, observed in simulating experiment using <sup>60</sup>Co source

Mg/Ca ratio

![](_page_46_Figure_6.jpeg)

Synthesizing simulated sludge to investigate physical property of solid phase

![](_page_46_Figure_8.jpeg)

![](_page_46_Figure_9.jpeg)

![](_page_46_Figure_10.jpeg)

Calculation of hydrogen concentration to confirm safety of explosion

![](_page_47_Picture_0.jpeg)

Analysis of radioactive waste: information/data required for risk assessment

![](_page_47_Figure_2.jpeg)

- ✓ Unique feature of waste originating from the Fukushima Daiichi accident
  - Difficult to predict radioactivity composition including DTM "Difficult-To-Measure" nuclides
  - Enormous amount
  - High dose rate

![](_page_47_Picture_7.jpeg)

- Inventory estimation method
- Analysis planning method
- Analysis method for DTMs

![](_page_48_Picture_0.jpeg)

Characterizing radioactive waste: analysis and related items for developing waste processing/disposal technologies

![](_page_48_Figure_2.jpeg)

Flow of characterization, composite of various items

Important items of characterizing waste

スラッジ

# Radioactive waste management R&D Waste characterization and development of statistical methods

| Class                   | Sample                                    |                    |                    | Number |       | Class Sample     |                         |                          |              | Numbe    |
|-------------------------|-------------------------------------------|--------------------|--------------------|--------|-------|------------------|-------------------------|--------------------------|--------------|----------|
| Rubble Reactor building | Reactor building                          |                    | Concrete, metal,   |        |       | Contaminated     | Reactor building        | Unit #1                  | Accumulated  | 3        |
|                         | Unit #1                                   | precipitate inside | 49                 | 49     | water |                  | Unit #1, PCV condensate | Accumulated              | 1            |          |
|                         |                                           | PCV, others        |                    |        |       |                  | Unit #2 including PCV,  | Accumulated              | 7            |          |
|                         |                                           | Unit #2            | Concrete, plugging | 46     |       |                  |                         | Torus                    | Accumulated  | <u> </u> |
|                         |                                           |                    | inside TIP, others |        |       |                  |                         | Unit #3 including PCV    | Accumulated  | 5        |
|                         |                                           | Unit #3            | Concrete, others   | 16     |       |                  |                         | Unit #4                  | Accumulated  | 1        |
| Turbine building        | Unit #4                                   | Concrete, metal,   | 14                 |        |       | Turbine building | Unit #1                 | Accumulated              | 7            |          |
|                         | Turking building                          | 11.5.#1            | otners             |        |       |                  |                         | Unit #2                  | Accumulated  | 4        |
|                         | Turbine building                          | Unit #1            | Sludge, others     | 9      |       |                  |                         | Unit #3                  | Accumulated  | 4        |
|                         |                                           | Unit #2            | Sludge             | 3      |       |                  |                         | Unit #4                  | Accumulated  | 1        |
|                         |                                           | Unit #3            | Sludge             | 2      |       |                  | Waste building          | Unit #1–4                | Accumulated  | 4        |
|                         |                                           | Unit #4            | Sludge             | 1      |       |                  | Centralized waste       |                          |              |          |
|                         | Waste building                            | Unit #1            | Sludge             | 1      |       |                  | treatment facility      | Process main             | Accumulated  | 17       |
| Centraliz               |                                           | Unit #2            | Sludge             | 1      |       |                  |                         | Incineration             | Accumulated  | 16       |
|                         |                                           | Unit #3            | Sludge             | 1      |       |                  | Treatment system        | Decontamination device   | Processed    | 3        |
|                         |                                           | Unit #4            | Sludge             | 2      |       |                  |                         | Cs adsorption (KURION)   | Processed    | 16       |
|                         | Centralized waste<br>treatment facility   | Process<br>main    | Sludge             | 5      |       |                  |                         | Cs adsorption (SARRY)    | Processed    | 26       |
|                         |                                           |                    |                    |        |       |                  |                         | Cs adsorption (SARRY II) | Processed    | 6        |
| R                       |                                           | Incineration       | Sludge             | 3      |       |                  |                         | ALPS                     | Processed    | 51       |
|                         | Rubble outside                            | Unit #1            | Concrete           | 6      |       |                  |                         | Evaporation              | Processed    | 3        |
|                         |                                           | Unit #3            | Concrete           | 6      |       |                  |                         | Reverse osmosis          | Processed    | 2        |
|                         |                                           | Unit #4            | Concrete           | 6      |       | Secondary        | ALDS corios             | Iron precipitation       | Slurry       | 2        |
|                         | Rubble stored                             | Vessel #1          | Concrete           | 7      |       |                  | ALFSSELLES              | Carbonate precipitation  | Slurry       | 10       |
|                         |                                           | Vessel #2          | Concrete           | 7      |       | waste from       |                         | Adsorbort                | Activ carbon | 2        |
|                         |                                           | Vessel #3          | Concrete           | 1      |       | treatment        |                         | Adsorbent                | Titopoto     | 2        |
| Combustible             | ole Incinerated ash of protective clothes |                    |                    | 5      |       | treatment        | Decontamination device  |                          | Sludge       | 2        |
| Soil                    | On premise                                |                    |                    | 13     |       |                  |                         |                          | Sludge       | 2        |
| Vegetation              | Tree cut down Branch, leaf                |                    | 5                  |        |       | Evaporation      |                         | Siurry                   | 4            |          |
| -                       | Living tree                               | Branch, leaf,      | 123                |        |       | Zeolite sandbag  |                         | Adsorbent                | 1            |          |
|                         | U U                                       |                    | -                  |        |       | A                |                         |                          |              |          |

\* As of May 2021.

**Radioactive waste management R&D** Waste characterization and development of statistical methods

Analysis planning is enforced by integrating international expertise

![](_page_50_Figure_2.jpeg)

![](_page_50_Figure_3.jpeg)

Calculating effective number of samples using Bayesian statistics as a result of UK collaboration

# **Radioactive waste processing and disposal** Safety of waste processing/disposal

## Preparing technology selection for solidification/disposal concept

Examples of basic data related to waste processing

![](_page_51_Figure_3.jpeg)

Cementitious solidification criteria for carbonate slurry

![](_page_51_Figure_5.jpeg)

![](_page_51_Figure_6.jpeg)

 Hietanen et al. (1984), concrete/saline Aggarwal et al. (2000), NRVB Baker et al. (2002), NRVB A Bayliss et al. (1996), NRVB Andersson et al (1983), HCP, mortar Aggarwal et al. (2000), HCP Pointeau et al. (2008), HCP △ Bonhoure et al. (2002), HCP ×Sarott et al. (1992), HCP/diffusion Aggarwal et al. (2000), CSH Noshita et al. (2001), CSH ANDRA (2005), CSH 3 months ONoshita et al. (2001), AFm, AFt Aggarwal et al. (2000), ettringite Noshita et al. (2001), hydrogarnet Wieland (2014), AFm Wieland (2014), CSH

Example of basic data on disposal; Distribution coefficient of iodine for cementitious material

Hydrogen generation "G-value" from iron slurry

# **Radioactive waste processing and disposal** Knowledge-base

A database, "FRAnDLi" is widely available for researchers involved in radioactive waste and decommissioning R&D

![](_page_52_Figure_2.jpeg)

https://frandli-db.jaea.go.jp/FRAnDLi/

Example of contents; plot and tables (with CSV download)

![](_page_53_Picture_0.jpeg)

Analysis data and related methodologies will be integrated to knowledge base for sustainable decommissioning activities

![](_page_53_Figure_2.jpeg)

 To prepare for future use of data with reliability.

## Radioactive waste processing and disposal Okuma Analysis and Research Center

### **Okuma Analysis and Research Center**

![](_page_54_Picture_2.jpeg)

### Laboratory -1

- Hot-cell operation has started in October 2022.
- Analysis of low-and-medium-dose radioactive wastes.
- Analysis of ALPS-treated water as third-party institution.

![](_page_54_Picture_7.jpeg)

![](_page_54_Picture_8.jpeg)

![](_page_54_Picture_9.jpeg)

### Lab-2 (Pre-construction phase)

- Construction will start soon after the licensing process to be cleared.
- Analysis of high dose samples such as fuel debris.

![](_page_54_Picture_13.jpeg)

\*The image shows a concrete cells at another JAEA site.

![](_page_55_Picture_0.jpeg)

![](_page_55_Figure_1.jpeg)

(Source) TEPCO website, https://www.tepco.co.jp/en/decommission/progress/watertreatment/oceanrelease/index-e.html

**Disposal of ALPS-treated water** Third-party analysis at JAEA Okuma Research and Analysis Center

Waste sample is pretreated in Iron Cell Room/GB Room/Fume Hood Rooms depending on surface dose rate. ALPS treated water sample is pretreated in Fume Hood Rooms.
 Sample flows are separated to prevent cross contamination.

![](_page_56_Figure_2.jpeg)

# **Disposal of ALPS-treated water** Third-party analysis at JAEA Okuma Research and Analysis Center

# Preparation is ongoing for reliable analysis with proper measurement methods for each nuclides

![](_page_57_Figure_2.jpeg)

Measurement of tritium concentration in ALPS treated water

**(Pretreatment)** Removing impurities that interfere with measurement by distillation

![](_page_57_Picture_5.jpeg)

[Measurement] Measuring  $\beta$  radiation from tritium by liquid scintillation counter (LSC)

![](_page_57_Picture_7.jpeg)

Example of LSC

Confirmation that the concentration of radioactive substances other than tritium is below the regulatory standard (Cs-137, Sr-90, Tc-99, etc)

#### [Pretreatment]

Adjusting the target nuclide to the state suitable for the measurement by operation such as separation

Ex. Separating target nuclides by operation such as solid-phase extraction that absorbs specific substance to resin

![](_page_57_Picture_13.jpeg)

Fume Hood

#### [Measurement]

Measuring nuclides by equipment suitable for each nuclide Ex.Cs-137:Ge semiconductor detector

![](_page_57_Picture_17.jpeg)

![](_page_57_Picture_18.jpeg)

![](_page_57_Picture_19.jpeg)

Ge semiconductor detector

ICP-MS

![](_page_58_Picture_0.jpeg)

未来へげんき To the Future / JAEA

# **5. Contribution to Fukushima reconstruction**

![](_page_58_Picture_3.jpeg)

![](_page_59_Picture_0.jpeg)

A pilot study of Fukushima Institute for Research, Education and Innovation (F-REI): Long-term tracing research of Fukushima ecosystem (Long-term ecological research: LTER)

- Long-term ecological research with the use of radioactive materials released by the 1F accident and stable isotopes in the Fukushima ecosystem as environmental tracers
- Field study for a long-term ecological research in a watershed scale with a few 10 km square (installation of study field of long-term ecological research)
- Assessment of impact of human activities on the biogeochemical cycle and biological community in the study field of long-term ecological research

![](_page_59_Figure_6.jpeg)

### Contribution to Fukushima reconstruction Collaboration with local stakeholders

### Working with local industry partners

![](_page_60_Picture_2.jpeg)

Radiation monitoring drone with visualization<sup>\*1</sup> Unmanned ship for monitoring and sampling

Sensor for polluted water leakage

### Education and training for young generation

![](_page_60_Picture_7.jpeg)

Training courses for high-school

\*1 Y. Sato et. al., J Nucl. Sci. Technol. 2020; 57: 734–744. This system was developed jointly with Chiyoda Technol Corp..

![](_page_61_Picture_0.jpeg)

#### Local events

![](_page_61_Picture_2.jpeg)

▲ Nara-SUN-Fes 2021 exhibition ▲

![](_page_61_Picture_4.jpeg)

▲ Open house ▲

### Fukushima Research Conference (FRC)

![](_page_61_Picture_7.jpeg)

#### ▲ FRC participants

Workshop

### Annual conference in Fukushima

![](_page_61_Picture_11.jpeg)

▲ Presentation by JAEA staff

![](_page_61_Picture_13.jpeg)

▲ Panel session

![](_page_61_Picture_15.jpeg)

Poster session ►

### **Future conferences**

Workshop on Mission H :

- Matching needs and solutions
- Promotion for Japan-UK joint research program
- FY2022 debriefing meeting

![](_page_62_Picture_0.jpeg)

### Working together for the future of Fukushima!

![](_page_62_Picture_2.jpeg)

International Topical Workshop on Fukushima Decommissioning Research

![](_page_62_Picture_4.jpeg)

JAEA's platform for fundamental research on decommissioning

# Thank you very much for your attention.

未来へげんき To the Future / JAEA